การพัฒนา Business Intelligence ด้วยธรรมาภิบาลข้อมูล

การพัฒนา Business Intelligence ด้วยธรรมาภิบาลข้อมูล

03 September 2022
Business Intelligence

ธรรมาภิบาลข้อมูล (Data Governance หรือ DG) จะช่วยให้แน่ใจว่าข้อมูลของบริษัทซึ่งเป็นสินทรัพย์ธุรกิจที่มีค่าที่สุดนั้น ( Business Intelligence ) ได้รับการเก็บรักษาและนำไปใช้ได้อย่างมีประสิทธิภาพและปลอดภัยที่สุด ดังนั้นธรรมาภิบาลข้อมูลจึงจำเป็นต้องมีนโยบายขององค์กร กระบวนการ เทคโนโลยี และพนักงานรับผิดชอบในการพัฒนากรอบงานที่นำไปปฏิบัติได้ ตั้งแต่โครงสร้างหลักไปจนถึงระยะเวลาการนำไปใช้

กรอบธรรมาภิบาลข้อมูลบริษัท เป็นกรอบงานแบบองค์รวมที่เกี่ยวข้องกับบุคลากรที่มีคุณสมบัติเหมาะสม รวมถึงนโยบายและกระบวนการที่วางแผนไว้เพื่อใช้งานเทคโนโลยีข้อมูลขั้นสูงให้เกิดประโยชน์สูงสุด อีกทั้งเพื่อให้แน่ใจว่าเป็นการเก็บรักษาและใช้งานข้อมูลในแบบที่มีประสิทธิภาพมากที่สุด เป้าหมายหลักของธรรมาภิบาลข้อมูลของธุรกิจคือการเพิ่มคุณภาพของข้อมูล ลดค่าใช้จ่ายในการบริหารจัดการข้อมูล และควบคุมการเข้าถึงข้อมูลของทุกคนอย่างเคร่งครัด

โดยปกติแล้ว วิธีการที่ธุรกิจใช้เพื่อบรรลุเป้าหมาย DG ของตนได้คือโดยการจัดตั้งนโยบาย มาตรฐาน และมาตรวัดที่เข้มงวด เพื่อไปให้ได้ผลลัพธ์ของการขับเคลื่อนด้วยข้อมูลตามที่ต้องการ โดยนโยบาย DG ในระดับพื้นฐานนั้นคือการออกกฎสำหรับการเข้าถึงและบริหารจัดการชุดข้อมูลขณะที่ยังคงยึดตามข้อบังคับด้านความเป็นส่วนตัวและการรักษาความปลอดภัยที่เกี่ยวข้องทั้งหมด

โรคระบาดเพิ่มมูลค่าของข้อมูลบริษัท

ตามการศึกษาของ Teradata ที่ได้จัดทำขึ้นเมื่อตุลาคม 2020 ผู้ตอบแบบสำรวจ 91% เห็นด้วยว่าโรคระบาดทำให้มูลค่าของข้อมูลในองค์กรสูงขึ้น ยิ่งไปกว่านั้น ผู้บริหารที่ตอบแบบสำรวจ 94% เห็นด้วยว่า “ข้อมูลเป็นสินทรัพย์ที่สำคัญ”

ในขณะที่ความสำคัญของข้อมูลเชิงลึกและการตัดสินใจโดยใช้ข้อมูลเพิ่มขึ้นเรื่อย ๆ มุมมองในอีกด้านคือ “garbage in, garbage out,” ซึ่งหมายถึงการตัดสินใจโดยใช้ข้อมูลเชิงลึกหรือข้อมูลดิบที่ไม่มีคุณภาพ ก็จะส่งผลให้ได้ผลลัพธ์ที่ไม่ดี ซึ่งข้อมูลดิบที่แย่นั้นก็จะส่งผลกระทบในระยะยาวสำหรับธุรกิจ เพราะสามารถทำลายความไว้วางใจที่ลูกค้าและผู้ที่เกี่ยวข้องคนอื่นๆ มีให้ได้อย่างถาวร!

ตามรายงานของ Gartner “87% ของธุรกิจทั้งหมด ไม่มีเครื่องมือ Business Intelligence หรือ  BI หรือการวิเคราะห์ข้อมูลที่มีประสิทธิภาพ” ทำให้องค์กรเกือบทั้งหมดประสบปัญหากับการใช้งานสินทรัพย์ข้อมูลของตน Gartner ได้จัดกลุ่มองค์กรที่มี BI ต่ำว่าเป็นกลุ่ม “พื้นฐาน” หรือ “มีโอกาส”  Gartner กล่าวซ้ำว่าองค์กรในระดับพื้นฐานถูกจำกัดอยู่ในการวิเคราะห์แบบสเปรดชีต ขณะที่องค์กรในระดับที่มีโอกาสจะมีหน่วยธุรกิจที่ติดตามข้อมูลดิบที่สะสมไว้และงานการวิเคราะห์ต่าง ๆ โดยไม่มีการควบคุมที่เป็นศูนย์กลาง

หนึ่งในสี่คำแนะนำของการศึกษาดังกล่าวคือการนำโปรแกรมธรรมาภิบาลข้อมูลไปใช้ในทุกองค์กรเพื่อเพิ่มความตระหนักถึงความสำคัญและผลประโยชน์ของ DG ในการบริหารจัดการข้อมูลและการวิเคราะห์ของบริษัท

DG ในการวิเคราะห์เชิงธุรกิจหรือใน BI

วิทยากรที่งาน Webinar เรื่องการกำกับดูแล BI ได้อธิบายว่า “การกำกับดูแล BI” และ “ธรรมาภิบาลข้อมูล” เป็นสองคำที่ใช้บ่อยในแวดวง BI นั้นค่อนข้างแตกต่างจากกัน Webinar นี้เจาะลึกเรื่องงานการกำกับดูแลที่เกี่ยวข้องกับ BI บริษัทและคงจะมีประโยชน์ไม่น้อยสำหรับคนที่สนใจในด้านนี้

องค์กรที่ขับเคลื่อนด้วยข้อมูลค่อย ๆ เลิกใช้โปรแกรมที่เฉพาะเจาะจงกับงาน ปัญหา Data Silos ค่อย ๆ หายไป ธุรกิจสมัยใหม่ต้อนรับ “Data Flows” ที่ต่อเนื่องในทุก ๆ แผนกและการทำงานที่หลากหลาย ด้วยความนิยมที่เพิ่มขึ้นของเทคโนโลยีรุ่นใหม่อย่างเช่น AI และการเรียนรู้ของเครื่องจักรกล (ML) ความสำคัญของคุณภาพของข้อมูลและธรรมาภิบาลข้อมูลก็เพิ่มขึ้นด้วย ตามการศึกษาเดียวกันของ Teradata ได้ระบุไว้ว่าผู้บริหารที่ตอบแบบสำรวจ 77% เชื่อว่าปัจจุบันนี้ “องค์กรมุ่งความสำคัญไปที่ความถูกต้องแม่นยำของข้อมูล”

โดยปกติแล้วเมื่อข้อมูลทางธุรกิจถูกนำไปวิเคราะห์ต่อ เพื่อทำการเปรียบเทียบหรือเพื่อเป็นข้อมูลทางการแข่งขัน เราจะเรียกวิธีการนี้เรียกว่า Business Intelligence (BI) หรือการวิเคราะห์ข้อมูลในเชิงธุรกิจ ในกรณีของ BI โปรแกรมธรรมาภิบาลข้อมูลบ่งบอกถึง “ขั้นตอนของการนำไปปฏิบัติและบังคับใช้สิทธิอำนาจในการบริหารจัดการข้อมูลและแหล่งข้อมูลที่เกี่ยวข้อง”

ด้วย BI ที่สามารถกำกับดูแลข้อมูลได้ บริษัทคาดหวังที่จะทำการตัดสินใจที่ดีขึ้น และในระยะเวลาที่สั้นลง  ตามที่ผู้เฝ้าสังเกตการณ์ธุรกิจเห็น เมื่อเวลาผ่านไป ศักยภาพของ BI ขั้นสูงจะง่ายขึ้นและใช้งานได้ฟรี การศึกษาของ Forbes ยืนยันว่าองค์กรที่ใช้งาน BI ที่มี DG เป็นหลักซึ่งมีประสิทธิภาพต่างรายงานถึง “ผลกำไรที่เพิ่มขึ้นอย่างมาก” จากการลงทุนใน BI ของพวกเขา

Elizabeth Mixson (เอลิซาเบ็ธ มิกสัน) ผู้เขียน The Ultimate Guide to Data Governance ให้ความเห็นว่า “หัวใจของการวิเคราะห์ข้อมูลคือการกำกับดูแลข้อมูล แต่พระเอกตัวจริงที่ไม่ได้รับการพูดถึงคือณภาพของข้อมูล ความสามารถในการนำไปใช้งาน และการรักษาความปลอดภัย”

วิธีที่จะกล่าวถึง เป็นวิธีการบางวิธีที่จะช่วยปรับปรุงการวิเคราะห์ข้อมูลขององค์กรและการใช่งาน BI:

  • สถาปัตยกรรมข้อมูล (Data Architecture) ที่เปรียบเสมือนพิมพ์เขียวสำหรับวางกลยุทธ์และบริหารจัดการข้อมูล เพื่อให้สอดคล้องกับกลยุทธ์ขององค์กร
  • คุณภาพของข้อมูล (Data Quality, DQ) เป็นเสมือนยามเฝ้าประตูของ “ข้อมูลที่ถูกต้องแม่นยำ ครบถ้วน ทันเวลา และเสมอต้นเสมอปลาย” ที่ใช้ภายในองค์กร
  • บริกรข้อมูล (Data Steward) เป็นผู้สร้างการควบคุมและจุดตรวจสำหรับทุกการปฏิสัมพันธ์ข้อมูลที่เกิดขึ้นทั่วกรอบธรรมาภิบาลข้อมูล
  • การสร้างโมเดลข้อมูล (Data Modeling) ช่วยให้องค์กรถอดรหัส การออกแบบฐานข้อมูลในระดับรูปธรรม หรือฟังก์ชันธุรกิจในระดับที่สมเหตุสมผล รวมถึงออกแบบนโยบายการเก็บข้อมูลดิบให้มีการควบคุมในการบริหารจัดการฐานข้อมูล มีการบริหารจัดการวงจรข้อมูล มีการออกใบอนุญาต และอีกมากมาย
  • การบริหารจัดการ Metadata เจาะลึกรายละเอียดยิบย่อยของข้อมูลดิบที่เก็บไว้
  • นโยบายการรักษาความปลอดภัยของข้อมูลช่วยต่อสู้กับการละเมิดความปลอดภัย ซึ่งในสหรัฐอเมริกามีค่าเฉลี่ยของความเสียหายโดยประมาณอยู่ที่ 3.92 ล้านดอลลาร์ในปี 2019
  • DG ยังช่วยให้ข้อมูลมีการผสานกันอย่างต่อเนื่องและทำให้การทำงานร่วมกันระหว่างระบบต่าง ๆ ที่หลากหลายนั้นง่ายขึ้น ซึ่งถือว่าเป็นแนวทางสู่ความเสร็จขององค์กรในการวิเคราะห์แบบคาดการณ์ล่วงหน้า

ธรรมาภิบาลข้อมูลสำหรับ BI แบบบริการตนเอง

ในองค์กรส่วนใหญ่ เป้าหมายสำคัญของทีม DG คือการ “ลดความเสี่ยงของการใช้ข้อมูลอย่างไม่เหมาะสม” ตามคำพูดของนักเขียนที่ต้องการจะแบ่งปันเรื่องราวเบื้องหลังในการทำ DG สำหรับ Business Intelligence แบบบริการตนเองนั้น นักธุรกิจสายลุยมักจะใช้วิธีแก้ปัญหาที่สร้างสรรค์ของตนเพื่อหลีกเลี่ยงการลงโทษจาก “นโยบาย DG” ภายในองค์กรของพวกเขา ผู้กล้าเสี่ยงเหล่านี้ใช้ “ไฟล์ Excel และรายการ SharePoint ด้วยข้อมูลที่ป้อนเข้าไปเอง” เพื่อบรรลุเป้าหมายในวิธีของพวกเขาเอง

วิธีประณีประนอมแบบคนละครึ่งทางก็คงจะเป็น BI แบบบริการตนเองที่มีการบริหารจัดการข้อมูลไว้แล้ว ทำให้นักธุรกิจเข้าถึงข้อมูลที่พวกเขาต้องการได้ง่ายขึ้น แต่อย่างไรก็ตามการเข้าถึงก็ยังคงอยู่ภายใต้ระบบและกระบวนการที่ทีม DG ตั้งไว้อย่างเคร่งครัด ซึ่งถ้าหากเป็นแบบนี้แล้วกลุ่ม DG และนักธุรกิจก็จะกลายเป็นพันธมิตรกัน โดยสามารถเข้าถึงข้อมูลได้ภายใต้เงื่อนไขที่เข้มงวด

สิ่งที่ดีที่สุดที่ได้จากบทความในลิงก์ด้านบนสรุปได้ว่า DG และ BI แบบบริการตนเองเป็นพันธมิตรต่อกันและเราก็ควรมองเช่นนั้น โครงการ DG โดยปกติจะเริ่มจากแผน แต่แผนมักจะเปลี่ยนเมื่อกลยุทธ์ขององค์กรเปลี่ยน ซึ่งการสร้างความสมดุลที่พิเศษนี้เกิดขึ้นได้ในบริษัทระดับโลกด้วยความช่วยเหลือของ Power BI

ถ้ามองในแง่ BI ช่วยปรับปรุงการใช้งาน DG โดยการฝังการวิเคราะห์อย่างฉลาดเข้าไปในระบบและกระบวนการขององค์กร เป้าหมายสูงสุดของการใช้งาน DG แบบมี BI คือการก้าวผ่านมาตรวัดคุณภาพไปและเริ่มสำรวจต้นเหตุของความผิดพลาดในระบบ เช่น การสืบหาแหล่งที่มาของข้อมูลดิบที่ไม่ดี เฝ้าสังเกตการณ์ความถี่ของความผิดพลาดที่เกิดขึ้นในระบบ หรือวิเคราะห์ว่าคุณภาพข้อมูลนั้นดีขึ้นหรือไม่เมื่อเวลาผ่านไป ซึ่งการใช้งาน DG ที่มีการวิเคราะห์ที่ซับซ้อนแบบนี้จะเกิดขึ้นได้ก็ต่อเมื่อมี BI ฝังอยู่ในระบบ

ธรรมาภิบาลข้อมูลสำหรับ BI: ตัวอย่างและผลประโยชน์

นี่คือตัวอย่างกรณีการใช้ DG สำหรับ BI ในบริษัท:

  • ในโมเดลธุรกิจแบบ SaaS ที่มีฐานผู้ใช้งานจำนวนมาก เป็นเรื่องที่สำคัญอย่างยิ่งที่ข้อมูลลูกค้าจะต้องถูกจัดเก็บและใช้งานสำหรับการวิเคราะห์ในวิธีที่มีความปลอดภัย
  • การติดตามข้อมูลพฤติกรรมลูกค้าและการวิเคราะห์ข้อมูลดังกล่าวแบบเชิงลึกกลายเป็นการวิเคราะห์ที่จำเป็นมากสำหรับการพัฒนาผลิตภัณฑ์และเพิ่มรายได้ในธุรกิจ DG จึงมีบทบาทสำคัญในการจัดการกับข้อมูลพฤติกรรมของลูกค้าเพื่อการวิเคราะห์เชิงลึกและ BI
  • ในไม่กี่ปีที่ผ่านมาการละเมิดข้อมูลสร้างความเสียหายในธุรกิจระดับโลกมากมาย DG เป็นอีกหนึ่งวิธีที่สามารถช่วยสร้างและเก็บรักษานโยบายข้อบังคับที่จำเป็นเพื่อหลีกเลี่ยงความเสียหายที่เกี่ยวข้องกับการละเมิดข้อมูล

ผลประโยชน์ของ DG สำหรับ BI:

  • DG ช่วยให้ทำการวิเคราะห์ข้อมูลธุรกิจได้ทันเวลาและถูกต้องแม่นยำ โดยเริ่มจากการรวบรวมข้อมูลและสิ้นสุดที่รายงาน ซึ่ง BI ที่มีการใช้งาน DD-enabled BI มีโอกาสมากกว่าที่จะค้นพบความเสี่ยงและโอกาส
  • DG ปรับปรุงกระบวนการดำเนินงานโดยช่วยให้ข้อมูล Flow ได้อย่างดีทั่วระบบและกระบวนการขององค์กร ซึ่งทำให้เกิดการตัดสินใจที่เร็วกว่าและดีกว่า
  • DG เพิ่มประสิทธิภาพการรักษาความปลอดภัยของระบบอีเมลและลดโอกาสการสูญเสียข้อมูลที่เป็นความลับ
  • DG ปรับปรุงคุณภาพของข้อมูล (DQ) ซึ่งคือเส้นเลือดหลักที่หล่อเลี้ยงชีวิตของ BI ในองค์กร
  • DG ช่วยให้แน่ใจว่ามีข้อมูลบริษัทที่ถูกต้องเพียงชุดเดียวเท่านั้น ซึ่งได้รับการควบคุมอย่างสูงและน่าเชื่อถือ
  • เพราะ DG  การบริหารจัดการข้อมูลสำหรับ BI จึงเป็นไปตามนโยบายข้อบังคับและมาตรฐานทั้งหมด

ขณะที่ BI บ่งชี้ถึงวิธีการบริหารจัดการข้อมูลที่ขับเคลื่อนด้วยเทคโนโลยีอย่างสูง DG อิงถึงกลยุทธ์แบบองค์รวมหรือกรอบงานสำหรับการทำให้เป้าหมายธุรกิจโดยรวมสอดคล้องกับเป้าหมายเชิงวิเคราะห์ของบริษัท  DG เปลี่ยนข้อมูลดิบให้เป็นสินทรัพย์เชิงกลยุทธ์

บทความโดย Paramita (Guha) Ghosh
เนื้อหาจากบทความของ Dataversity
แปลและเรียบเรียงโดย ไอสวรรค์ ไชยชะนะ
ตรวจทานและปรับปรุงโดย นนทวิทย์ ชีวเรืองโรจน์

แบ่งปันบทความ

กลุ่มเนื้อหา

แท็กยอดนิยม

แจ้งเรื่องที่อยากอ่าน

คุณสามารถแจ้งเรื่องที่อยากอ่านให้เราทราบได้ !
และเราจะนำไปพัฒนาบทความให้มีเนื้อหาที่น่าสนใจมากขึ้น

PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.