Natural Language Processing

Natural Language Processing

ข่าวและบทความที่เกี่ยวข้อง

Related news and articles

PostType Filter

บทความ

หรือว่า AI จะไม่เก่งจริง!! - สาเหตุที่ทำให้ ​AI ยังไม่ถูกนำมาใช้ในชีวิตจริงมากเท่าที่ควร
ตั้งแต่การเรียนรู้เชิงลึก (Deep Learning) ถูกพัฒนาขึ้น ปัญญาประดิษฐ์ก็เข้ามามีบทบาทในชีวิตมนุษย์อย่างมาก ในหลายรูปแบบ ตั้งแต่ในแอปพลิเคชันบนสมาร์ตโฟน กล้องวงจรปิดที่ใช้ตามบ้าน แม้แต่โปรโมชันที่แบรนด์สินค้าเสนอให้กับเราในฐานะลูกค้าในหลายครั้งก็เป็นผลจากการใช้ปัญญาประดิษฐ์ เพื่อประมวลผลทางสถิติว่าโปรโ...

บทความ

Natural Language Processing (NLP): เครื่องมือที่ช่วยให้คอมพิวเตอร์เข้าใจภาษามนุษย์
            ถึงแม้ว่าการวิเคราะห์ข้อมูลต่าง ๆ และการสร้างแบบจำลองจากข้อมูลเหล่านั้นด้วยศาสตร์ทางด้านการเรียนรู้ของเครื่อง (Machine Learning) จะเกี่ยวข้องกับข้อมูลที่มีโครงสร้าง (Structured Data) เช่น ข้อมูลเชิงตาราง (Tabular Data) เป็นส่วนใหญ่ แ...

บทความ

การแก้ปัญหาข้อมูลที่ไม่มีโครงสร้างด้วย NLP และโมเดลภาษาหนึ่งในกลยุทธ์ AI ขององค์กร
ในบทความแขกรับเชิญพิเศษนี้ ประภท สุนการะ (Prabhod Sunkara) ผู้ร่วมก่อตั้งและ COO ของบริษัท nRoad, Inc. ได้พูดถึงเรื่องของการที่องค์กรต่าง ๆ พึ่งพาข้อมูลที่ไม่มีโครงสร้างมากขึ้นเพื่อจุดประสงค์ในการวิเคราะห์ กำกับดูแล และทำการตัดสินใจในระดับองค์กร โดย nRoad เป็นแพลตฟอร์มที่สร้างมาเพื่อการประมวลผลภาษาธ...

บทความ

คลังข้อความภาษาไทย (Thai text corpus)
มาทำความรู้จักกับ คลังข้อความภาษาไทย ซึ่งเป็นชุดข้อความภาษาไทยจำนวนมหาศาลสำหรับโมเดลการประมวลผลภาษาธรรมชาติ อย่างที่ใช้ในสร้าง chatbot

บทความ

GPT-3 คืออะไร? ปัญญาประดิษฐ์ที่จะมาแย่งงานคนทั่วโลกในอนาคต!?
GPT-3 คือโมเดลทางภาษาที่มีความสามารถหลากหลายและ(ดูเหมือน)มีความฉลาดคล้ายมนุษย์ AIนี้เป็นหนึ่งในหลายตัวที่ทำให้เกิดความตื่นกลัวของการนำ AI ทำงานแทนที่มนุษย์ ถึงแม้มันจะมีข้อจำกัดหลายอย่าง การพูดถึงการ AI ในการเข้ามาแทนภาคแรงงานในวันนี้เป็นเรื่องที่จำเป็นต้องทำความเข้าใจ เพราะมันไม่ได้น่ากลัว และซ่อนโ...

บทความ

การค้นหาตัวแทนเชิงความหมายของข้อความ: Word2Vec Word Embedding, Part II
หลังจากที่เราได้พูดถึงหลักการทำงานของโมเดลเบื้องต้นในการทำ word embedding ได้แก่โมเดล CBOW และ Skip-gram ไปแล้ว ในบทความนี้ เราจะมาพูดถึงวิธีการนำผลลัพธ์ที่ได้จากการฝึกฝนของโมเดลในตระกูล Word2Vec สองโมเดลนี้มาทำการสร้างตัวแทนเชิงความหมายของคำและเอกสาร พร้อมทั้งลองเขียนโค้ดง่ายๆ เพื่อลองประยุกต์ใช้งา...

บทความ

การค้นหาตัวแทนเชิงความหมายของข้อความ: Word2Vec Word Embedding, Part I
ในปัจจุบันข้อมูลที่มีลักษณะเป็นข้อความ (text) นั้นมีอยู่เป็นปริมาณมากแต่การประมวลผลข้อมูลเหล่านี้ไม่สามารถทำได้อย่างตรงไปตรงมาและจำเป็นต้องมีการจัดเตรียม (preprocess) ให้อยู่ในลักษณะที่เหมาะสมแก่การนำไปคำนวณได้เสียก่อน ซึ่งการจัดเตรียมข้อมูลเหล่านี้สามารถทำได้จากหลากหลายเทคนิคไม่ว่าจะเป็นการทำการประ...

บทความ

สกัดใจความสำคัญของข้อความด้วยเทคนิคการประมวลผลทางภาษาเบื้องต้น: TF-IDF, Part 2
ก่อนที่เราจะสามารถนำเอาเทคนิคการประมวลผลภาษาธรรมชาติ (Natural Language Processing: NLP) มาใช้กับภาษาไทยได้นั้น อุปสรรคหลักอย่างหนึ่ง คือ ภาษาไทยไม่ได้มีการเว้นวรรคระหว่างคำเหมือนหลายภาษาอื่น (เช่น ภาษาอังกฤษ) ดังนั้น การ “ตัดคำ” หรือการแยกข้อความภาษาไทยออกเป็นคำเดี่ยวๆ จึงเป็นสิ่งที่จำเป็นแรกที่ต้อง...

บทความ

สกัดใจความสำคัญของข้อความด้วยเทคนิคการประมวลผลทางภาษาเบื้องต้น: TF-IDF, Part 1
ข้อมูลในรูปแบบข้อความมีรูปแบบและความยาวที่หลากหลาย ส่งผลให้ข้อมูลชนิดข้อความถูกนำมาวิเคราะห์ได้ยากกว่ามาก ดังนั้นความสามารถในการสกัดเอาข้อมูลที่สำคัญออกมาจากจากข้อความ (Text Mining) ได้จึงเป็นสิ่งที่สำคัญและเป็นประโยชน์อย่างมาก
ไอคอน PDPA

เราใช้คุกกี้เพื่อพัฒนาประสิทธิภาพ และประสบการณ์ที่ดีในการใช้เว็บไซต์ของคุณ คุณสามารถศึกษารายละเอียดได้ที่ “นโยบายคุ้กกี้” และสามารถจัดการความเป็นส่วนตัวเองได้ของคุณได้เองโดยคลิกที่ “ตั้งค่า”

ตั้งค่าความเป็นส่วนตัว

คุณสามารถเลือกการตั้งค่าคุกกี้โดยเปิด/ปิด คุกกี้ในแต่ละประเภทได้ตามความต้องการ ยกเว้น คุกกี้ที่จำเป็น

ยอมรับทั้งหมด
จัดการความเป็นส่วนตัว
  • คุกกี้ที่มีความจำเป็น (Strictly Necessary Cookies)
    เปิดใช้งานตลอด

    คุกกี้ประเภทนี้มีความจำเป็นต่อการให้บริการเว็บไซต์ของ สำนักงานคณะกรรมการคุ้มครองข้อมูลส่วนบุคคล เพื่อให้ท่านสามารถเข้าใช้งานในส่วนต่าง ๆ ของเว็บไซต์ได้ รวมถึงช่วยจดจำข้อมูลที่ท่านเคยให้ไว้ผ่านเว็บไซต์ การปิดการใช้งานคุกกี้ประเภทนี้จะส่งผลให้ท่านไม่สามารถใช้บริการในสาระสำคัญของ สำนักงานคณะกรรมการคุ้มครองข้อมูลส่วนบุคคล ซึ่งจำเป็นต้องเรียกใช้คุกกี้ได้
    รายละเอียดคุกกี้

  • คุกกี้เพื่อการวิเคราะห์และประเมินผลการใช้งาน (Performance Cookies)

    คุกกี้ประเภทนี้ช่วยให้ BDI ทราบถึงการปฏิสัมพันธ์ของผู้ใช้งานในการใช้บริการเว็บไซต์ของ BDI รวมถึงหน้าเพจหรือพื้นที่ใดของเว็บไซต์ที่ได้รับความนิยม ตลอดจนการวิเคราะห์ข้อมูลด้านอื่น ๆ BDI ยังใช้ข้อมูลนี้เพื่อการปรับปรุงการทำงานของเว็บไซต์ และเพื่อเข้าใจพฤติกรรมของผู้ใช้งานมากขึ้น ถึงแม้ว่า ข้อมูลที่คุกกี้นี้เก็บรวบรวมจะเป็นข้อมูลที่ไม่สามารถระบุตัวตนได้ และนำมาใช้วิเคราะห์ทางสถิติเท่านั้น การปิดการใช้งานคุกกี้ประเภทนี้จะส่งผลให้ BDI ไม่สามารถทราบปริมาณผู้เข้าเยี่ยมชมเว็บไซต์ และไม่สามารถประเมินคุณภาพการให้บริการได้

  • คุกกี้เพื่อการใช้งานเว็บไซต์ (Functional Cookies)

    คุกกี้ประเภทนี้จะช่วยให้เว็บไซต์ของ BDI จดจำตัวเลือกต่าง ๆ ที่ท่านได้ตั้งค่าไว้และช่วยให้เว็บไซต์ส่งมอบคุณสมบัติและเนื้อหาเพิ่มเติมให้ตรงกับการใช้งานของท่านได้ เช่น ช่วยจดจำชื่อบัญชีผู้ใช้งานของท่าน หรือจดจำการเปลี่ยนแปลงการตั้งค่าขนาดฟอนต์หรือการตั้งค่าต่าง ๆ ของหน้าเพจซึ่งท่านสามารถปรับแต่งได้ การปิดการใช้งานคุกกี้ประเภทนี้อาจส่งผลให้เว็บไซต์ไม่สามารถทำงานได้อย่างสมบูรณ์

  • คุกกี้เพื่อการโฆษณาไปยังกลุ่มเป้าหมาย (Targeting Cookies)

    คุกกี้ประเภทนี้เป็นคุกกี้ที่เกิดจากการเชื่อมโยงเว็บไซต์ของบุคคลที่สาม ซึ่งเก็บข้อมูลการเข้าใช้งานและเว็บไซต์ที่ท่านได้เข้าเยี่ยมชม เพื่อนำเสนอสินค้าหรือบริการบนเว็บไซต์อื่นที่ไม่ใช่เว็บไซต์ของ BDI ทั้งนี้ หากท่านปิดการใช้งานคุกกี้ประเภทนี้จะไม่ส่งผลต่อการใช้งานเว็บไซต์ของ BDI แต่จะส่งผลให้การนำเสนอสินค้าหรือบริการบนเว็บไซต์อื่น ๆ ไม่สอดคล้องกับความสนใจของท่าน

บันทึกการตั้งค่า
ไซต์นี้ลงทะเบียนกับ wpml.org ในฐานะไซต์พัฒนา สลับไปยังไซต์การผลิตโดยใช้รหัส remove this banner.